Pareto Local Search Algorithms for Anytime Bi-objective Optimization
نویسندگان
چکیده
Pareto local search (PLS) is an extension of iterative improvement methods for multi-objective combinatorial optimization problems and an important part of several state-of-the-art multi-objective optimizers. PLS stops when all neighbors of the solutions in its solution archive are dominated. If terminated before completion, it may produce a poor approximation to the Pareto front. This paper proposes variants of PLS that improve its anytime behavior, that is, they aim to maximize the quality of the Pareto front at each time step. Experimental results on the bi-objective traveling salesman problem show a large improvement of the proposed anytime PLS algorithm over the classical one.
منابع مشابه
Effective Stochastic Local Search Algorithms For Bi-Objective Permutation Flowshop Scheduling
In this report, we study stochastic local search (SLS) algorithms for biobjective optimization problems. In particular, we study multi-objective algorithms that belong to two different classes of approaches, those that use a scalarized acceptance criterion (SAC) and those that use a componentwise acceptance criterion (CWAC). As a representative example of a SAC algorithm, we study Two-Phase Loc...
متن کاملA Simple yet Efficient Multiobjective Combinatorial Optimization Method Using Decomposition and Pareto Local Search
Combining ideas from evolutionary algorithms, decomposition approaches and Pareto local search, this paper suggests a simple yet efficient memetic algorithm for combinatorial multiobjective optimization problems: MoMad. It decomposes a combinatorial multiobjective problem into a number of single objective optimization problems using an aggregation method. MoMad evolves three populations: popula...
متن کاملA Multi-Objective Particle Swarm Optimization Algorithm for a Possibilistic Open Shop Problem to Minimize Weighted Mean Tardiness and Weighted Mean Completion Times
We consider an open shop scheduling problem. At first, a bi-objective possibilistic mixed-integer programming formulation is developed. The inherent uncertainty in processing times and due dates as fuzzy parameters, machine-dependent setup times and removal times are the special features of this model. The considered bi-objectives are to minimize the weighted mean tardiness and weighted mean co...
متن کاملMany-Objective Pareto Local Search
We propose a new Pareto Local Search Algorithm for the many-objective combinatorial optimization. Pareto Local Search proved to be a very effective tool in the case of the bi-objective combinatorial optimization and it was used in a number of the state-of-the-art algorithms for problems of this kind. On the other hand, the standard Pareto Local Search algorithm becomes very inefficient for prob...
متن کاملHybrid algorithms for the twin-screw extrusion configuration problem
The twin-screw configuration problem (TSCP) arises in the context of polymer processing, where twinscrew extruders are used to prepare polymer blends, compounds or composites. The goal of the TSCP is to define the configuration of a screw from a given set of screw elements. The TSCP can be seen as a sequencing problem as the order of the screw elements on the screw axis has to be defined. It is...
متن کامل